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Abstract

Bitcoin is the most well known and prominent cryptocurrency dependent
on the decentralization and cryptography. The decentralization implies that
the Bitcoin system is entirely controlled and possessed by its clients, who
must hold to a similar arrangement of principles. The cryptography con-
trols money creation (fixed to a limit of 21 million coins) and exchanges,
no national bank is required. This decentralized nature offers numerous fo-
cal points, for example, being free from government control and guideline,
however critics say that there is no control on the entire system apart from
its users. Predicting the future evolution of Bitcoin returns could be a cen-
tral concern in finance. Forecasts are typically produced from simple linear
time series models. The classical methods used for time series prediction,
like ARIMA models or structural time series models, assume that there is
a linear relationship between inputs and outputs. Artificial neural network
modeling has recently attracted much attention as a new technique for es-
timation and forecasting in economics and finance. The chief advantages
of this approach are that such models can usually find a solution for very
complex problems, and that they are free from the assumption of linear-
ity that is often adopted to make the traditional methods tractable. Neural
networks have been successfully used for forecasting of financial and eco-
nomics data series. The objective of this article is to forecast Bitcoin returns
using neural networks, and to compare the forecasting performance of such
non-linear models. We found that best time series neural network models
roughly exhibit the same MSE.



1 INTRODUCTION

The theory of efficient markets has been largely denied by the statistical
study of time series of the financial markets. The financial markets do not
have completely unpredictable trends, but there are some forms of order
that have certain recurrences, that allow to obtain results in forecasting tech-
niques. Mandelbrot called these non-regular order forms with the name
of Noah effect. Above all technical analysis has developed over time from a
purely graphic discipline to a decidedly more quantitative one. The classical
technical analysis tries to weigh and predict the sentiment of the markets,
or the continuation or not of a trend. Quantitative analysis tries to iden-
tify the most probable future scenario in respect of a series of calculation
parameters. There are many forecasting techniques related to the use of in-
dicators and oscillators that combined within the trading system can give
excellent results with a good regularity. In the present work we considered
two categories of time series neural network models, the NAR model and
the NARX model, and we compared the goodness of fit and forecasts of the
competing models on the basis of MSE (mean squared error) and R (corre-
lation coefficient between outputs and targets). There are five input series
for NARX model, the lagged Bitcoin returns, and four of the most popu-
lar oscillators in the literature: Moving Average Convergence Divergence
(MACD), Relative Strength Index (RSI), Rate of Change (ROC) and Accel-
eration (Momentum of ROC). Those four oscillators, together with lagged
Bitcoin returns, are used, in the NARX model, to improve the forecasting
ability of the methodology while NAR model relies only on lagged Bitcoin
returns.

2 SURVEY OF THE EMPIRICAL LITERATURE

The use of neural networks was introduced in economics at the beginning
of the nineties. There has been considerable interest in applications of neu-
ral networks in the economics literature, particularly in the areas of financial
statistics and exchange rates. In contrast, relatively few studies have applied
neural network methods to cryptocurrencies, such as Bitcoin. The article by
[39] is likely the definitive introduction of neural networks to the economet-
rics literature, the authors draw many of the parallels between econometrics
and neural networks. [39]’s theoretical contribution has been followed with
some applied work by [44]. These authors demonstrate that the 14 macroeco-
nomic series analyzed can be nicely modelled using neural networks. [55]
represents another major attempt at using neural nets to forecast macroe-
conomic variables. [8] studies the behaviour of cryptocurrencies financial
time series of which Bitcoin is the most prominent example. The dynamic
of those series is quite complex displaying extreme observations, asymme-
tries, and several nonlinear characteristics which are difficult to model. [8]
develops a new dynamic model able to account for long memory and asym-
metries in the volatility process as well as for the presence of timevarying
skewness and kurtosis. [10] focuses on predicting the conditional volatility
of the four most traded cryptocurrencies: Bitcoin, Ethereum, Litecoin and
Ripple. [10] investigates the effect of accounting for long memory in the
volatility process as well as its asymmetric reaction to past values of the
series to predict: one day, one and two weeks volatility levels. [59] adopts
artificial neural network (ANN) and two varieties of time series neural net-



work models to forecast the stock index of Chinese market. [13] provided a
statistical analysis of the log-returns of the exchange rate of Bitcoin versus
the United States Dollar. Fifteen of the most popular parametric distribu-
tions in finance were fitted to the log returns. They found that generalized
hyperbolic distribution gave the best fit. Predictions were given for future
values of the exchange rate. [37] forecasted daily returns of cryptocurrencies
using a wide variety of different econometric models. To capture salient fea-
tures commonly observed in financial time series like rapid changes in the
conditional variance, non-normality of the measurement errors and sharply
increasing trends, [37] developed a time-varying parameter VAR with t-
distributed measurement errors and stochastic volatility. [37] used around
one year of daily data, to perform real-time forecasting exercise and investi-
gated whether any of the proposed models is able to outperform the naive
random walk benchmark.

3 DATA

The working time series are daily Bitcoin closing prices, daily Bitocoin re-
turns and four daily oscillators. There are 6 series in the data set and the
sample is from January 1, 2013 until May 31, 2018. There are 1977 observa-
tions in each series, so the sample is quite large, neural networks need larger
samples in order to be estimated properly, this is due to the large number
of parameters introduced in such models. In Table 1 are reported the de-
scriptive statistics for the six time series. All the series are right skewed
and leptokurtic, so they have fat tails and high peak (which is a feature of
most financial time series), except for RSI(14) that is platykurtic. In Table
2 are shown the test statistics (and p-values) for normality, autocorrelation
and randomness regarding the mentioned six time series. All the series are
non normal, autocorrelated and non random, except for Bitcoin returns that
exhibits no autocorrelation and randomness. In Figure 1 are shown the time
series plots for Bitcoin daily closing prices and Bitcoin daily returns. The
plot for Bitcoin returns exhibits many spikes which means that the distri-
bution has fat tails. In Figure 2 there are the time series plots for the four
oscillators computed using the Bitcoin time series.

For our forecasting we used four daily oscillators among the best known
in the literature: MACD, RSI, ROC and Momentum of ROC. Let’s see
some details of these oscillators. The Moving Average Convergence Di-
vergence/Divergence (MACD) was designed by Gerald Appel and is the
difference between 2 exponential moving averages: a short moving average
at 12 periods and a longer at 26 periods. The Relative Strength Index (RSI)
was designed by Wells Wilder and substantially compares the pressure of
buyers compared to that of sellers and is calculated over 14 periods. The
Rate of Change (ROC) is calculated over 10 periods and is the percentage
difference between the last data and 10 previous periods. Practically is a
velocity of price variation. The Acceleration is the Momentum of the ROC,
or the speed of variation of the ROC and is calculated over 10 periods. We
know that the objective of the oscillators is to show the most cyclical part of
the markets, reducing the effects of the trend. Each of the selected oscillators
performs this work differently and on slightly different time horizons.
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(a) Bitcoin closing prices. (b) Bitcoin returns.

Figure 1: Time series plot of Bitcoin closing prices and Bitcoin returns from January
1, 2013 until May 31, 2018.
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(c) RSI (14). (d) Momentum (10) of ROC.

Figure 2: Time series plot of MACD (12), ROC (10), RSI (12) and Momentum (10) of
ROC for Bitcoin from January 1, 2013 until May 31, 2018.

4 NEURAL NETWORKS FOR TIME SERIES FORE-
CASTING

We considered two types of neural network models for time series forecast-
ing, the NARX model and the NAR model (see [6] and [5]). In the first type
of neural network model, you can predict future values of a time series y(t)
from past values of that time series and past values of a second time series
x(t). You can add also same more series x(t). This form of prediction is
called nonlinear autoregressive with exogenous (external) input, or NARX
(see Figure 3), and can be written as follows:

y(t) =fly(t—=1),..,ylt—d),x(t—=1),..., (t—4)) (1)

Where d is the number of delays. This model could be used to predict
future values of a stock or bond, based on such economic variables as un-
employment rates, GDP, etc. In the second type of neural network model,
there is only one series involved. The future values of a time series y(t) are
predicted only from past values of that series. This form of prediction is



Table 1: Descriptive statistics for Bitcoin closing prices, Bitcoin returns and oscilla-
tors from January 1, 2013 until May 31, 2018.

Variable Mean Median Standard Skewness Kurtosis IQR
Deviation
Bitcoin 1761.400 475.320 3233.600  2.715 7-233 733.130
Bitcoin returns 0.435 0.247 4.786 0.468 7.767 3.406
MACD(12) 29.411 3.423 278.620 3.304 33.600 27.911
ROC(10) 5.495 2.070 26.488 7.114 101.620 16.718
RSI(14) 55.507 53.730 15.288 0.280 -0.205 19.994
Momentum(10) of ROC  -0.054 0.585 37.429 1.523 78.700 20.417

Figure 3: The NARX network with 1 input series, 2 number of delays and 10 hidden
neurons (source http://www.mathworks . com).

called nonlinear autoregressive, or NAR (see Figure 4), and can be written
as follows:

y(t) =fly(t=1),...,y(t—d)) (@)

Where d is the number of delays. This model could also be used to predict
financial instruments, but without the use of one or more companion series.

To train the NARX and NAR neural network models we divided each
time series into three sets as follows:

o The first 60% of the data has been used for training, these are pre-
sented to the network during training, and the network is adjusted
according to its error.

e From 60% to 80% of the data has been used to validate that the net-
work is generalizing and to stop training before overfitting, these are
used to measure network generalization, and to halt training when
generalization stops improving.

o The last 20% of the data has been used as a completely independent
test of network generalization, these have no effect on training and so
provide an independent measure of network performance during and
after training.

We used a log-sigmoid transfer function for the Hidden part of the net-
work and a linear transfer function for the Output part of the network (see
Figure 3 and Figure 4). Moreover to train the neural network we used dif-
ferent number of delays and ten hidden neurons. There are plenty of the
training algorithms available in neural network. In this article three algo-
rithms have been used to train the NARX and NAR network: Levenberg-
Marquardt (see [41] and [46]), Scaled Conjugate Gradient (see [50]), and

Hidden Output
y(t) 3 y(t)
g 33)@ @ l L w @ .
1 n n 1

10 1

Figure 4: The NAR network with 2 number of delays and 10 hidden neurons (source
http://www.mathworks.com).
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Table 2: Tests statistics for Bitcoin closing prices, Bitcoin returns and oscillators from
January 1, 2013 until May 31, 2018 (p-values in parentheses).

Variable Jarque-Bera Shapiro-Wilk  Ljung-Box (2) Ljung-Box (4) White Noise
Normality ~ Normality Autocorrelation  Autocorrelation  Test
Test Test Test Test
Bitcoin 6726.600 0.547 3911.600 7767.300 2844.306
(0.000) (0.000) (0.000) (0.000) (0.000)
Bitcoin returns 7926.000 0.870 3.126 3.687 -0.209
(0.000) (0.000) (0.210) (0.450) (0.917)
MACD(12) 96546.000 0.466 3840.400 7340.400 739.814
(0.000) (0.000) (0.000) (0.000) (0.000)
ROC(10) 866880.000  0.613 2142.800 3708.500 212.182
(0.000) (0.000) (0.000) (0.000) (0.000)
RSI(14) 29.364 0.986 3396.500 6176.900 1157.402
(0.000) (0.000) (0.000) (0.000) (0.000)
Momentum(10) of ROC  510710.000  0.583 1770.500 2777.900 192.509
(0.000) (0.000) (0.000) (0.000) (0.000)

Bayesian Regularization (see [45] and [22]). Levenberg-Marquardt (L-M) is
a network training function that updates weight and bias values according
to Levenberg-Marquardt optimization, this is a simple method for approxi-
mating a function. One of the main drawbacks of the Levenberg-Marquardt
algorithm is that, for certain problems it needs the large storage of some ma-
trices. Scaled Conjugate Gradient algorithm (S5-C-G) can train any network
as long as its weight, net input, and transfer functions that have derivative
functions. Bayesian regularization algorithm (B-R), a suitable method for es-
timation when a large number of inputs is used for best output, minimizes
a grouping of squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes well.

5 EMPIRICAL RESULTS

In Table 3 are reported the MSE, calculated on the testing sample, and R,
for different training algorithms and different delays, for estimated NAR
models, in Table 4, Table 5 and Table 6 those for NARX models. The testing
sample is roughly 395 days, so one year and a month. As we can see for
those tables, on the basis of MSE, the best models for Bitcoin are NAR with
3 delays estimated with Levenberg-Marquardt algorithm and NARX with 2
delays and input series with 3 days of lag estimated with Bayesian regular-
ization. Moreover the best models for Bitcoin for imput series with 6 and 9
days of lag are NARX with 14 delays estimated with Levenberg-Marquardt
method and NARX with 3 delays estimated with Bayesian regularization,
respectively. When selecting the models we considered also the correlation
coefficient R between outputs and targets computed on all sample period
(training, validating and testing samples). In Table 7 are presented the
test statistics for forecasting errors of the mentioned models. All the se-
ries exhibit non normality, uncorrelation and randomness. In Figure 5 we
reported the plots of MSE for estimated NAR and NARX models for dif-
ferent estimation algorithms and different lags for input series. We can see
from Figure 5 that, as an overall performance, the best models are NARX
with 3 days of lag for input series, NARX with 6 days of lag for input se-
ries, both estimated with Bayesian regularization, and NAR models trained
with Levenberg-Marquardt optimization and Scaled Conjugate Gradient al-
gorithm.



Table 3: MSE and R for estimated NAR models.

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient

MSE R MSE R MSE R
NAR delay 1 30.959 0.197 104.385 0.143 42.029 0.063
NAR delay 2 29.840 0.199 34.628  0.338 29.499 0.178
NAR delay 3 29.033 0.223 34.673 0398 29.461 0.015
NAR delay 4 30.150 0.139 20.614  0.039 30.045 0.093
NAR delay 5 29.615 0.206 20.555  0.074 30.299 0.029
NAR delay 6  30.333 0.203 29.836  0.097 30.274 0.103
NAR delay 7 30.890 0.324 29.811  o.107 35.752  0.059
NAR delay 8  29.969 0.271 42.106 0483 31.641 0.064
NAR delay 9 30.871  0.366 30.072  0.109 29.489 0.106
NAR delay 10 30.908 0.154 29.823  o0.121 30.844 o0.111
NAR delay 11 31.019 0.135 209.920  0.137 31.068 0.120
NAR delay 12 34.069 0.449 47.057  0.517 31.344 0.088
NAR delay 13 36.878 o0.517 30.054  0.136 31.268  0.066
NAR delay 14 38.423 0.513 30.190  0.141 30.693 0.152

Table 4: MSE and R for estimated NARX models using the input series with 3 days

of delay.

Levenberg-Marquardt Bayesian Regularization ~Scaled Conjugate Gradient

MSE R MSE R MSE R
NARX delay 1 171.358 0.064 30.412  0.093 40.141  0.015
NARX delay 2 80.200  0.159 30.220 0.096 35.439  0.106
NARX delay 3 184.820 0.116 30.229  0.097 37.293  0.056
NARX delay 4 69.071  0.090 30.412  0.092 138.135 0.035
NARX delay 5 59.071  0.102 36.193 0.088 49.798  0.059
NARX delay 6  38.891  o.115 34.020 0.106 113.572 0.042
NARX delay 7 142.320 0.167 33.560 0.115 42.193  0.071
NARX delay 8  304.065 0.104 32.971 0.122 89.368  0.035
NARX delay 9 33.184 o0.132 32.971 0.123 44.967  0.073
NARX delay 10  30.439  0.088 34.752  0.119 126.490 0.034
NARX delay 11 48.562  0.076 35.891  0.126 200.187  0.006
NARX delay 12 100.053 0.067 34.325 0.126 91.908  0.083
NARX delay 13 159.400 0.077 33.410 0.134 380.511  0.003
NARX delay 14 228350 0.145 32.741  0.142 249.955 0.032

Table 5: MSE and R for estimated NARX models using the input series with 6 days

of delay.

Levenberg-Marquardt Bayesian Regularization ~Scaled Conjugate Gradient

MSE R MSE R MSE R
NARX delay 1 227.108 0.047 40.208  0.044 95.824 0.028
NARX delay 2 274.629 0.032 41.538 0.056 75.477 0.010
NARX delay 3 246.005 0.036 35.420 0.074 43.915 0.066
NARX delay 4 210.093 0.072 34.342 0.083 93.261  0.038
NARX delay 5 55.939  0.165 32.916 0.099 60.316 0.052
NARX delay 6 30.298  0.141 34.034 0.106 56.413 0.029
NARX delay 7 87.074  0.148 37.195 0.103 32.971 0.132
NARX delay 8  40.092  0.057 37.304 0.107 33.498 0.132
NARX delay 9 57.367  0.192 36.116 0.114 36.696 0.131
NARX delay 10 34.486  0.159 34.471 0.123 51.118 0.061
NARX delay 11 31.428  0.097 34.810 0.132 48.989 0.031
NARX delay 12 137.843 0.128 33.233 0.141 62.282  0.003
NARX delay 13 123.011  0.206 33.310 0.143 52.785 0.036
NARX delay 14 30.446  0.066 34.281  0.140 99.426  0.002
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Figure 5: Plot of MSE against delay for estimated NAR and NARX models, for Bit-
coin returns, using different lags for input series and different estimation
algorithms.

6 CONCLUDING REMARKS

Cryptocurrencies have recently gained a lot of interest from investors, cen-
tral banks and governments worldwide. The lack of any form of political
regulation and their market far from being efficient, require new forms of
regulation in the near future. From an econometric viewpoint to understand
the process underlying the evolution of cryptocurrencies returns is essential.
In this paper we perform a systematic comparison of NAR and NARX arti-
ficial neural network models in terms of predicting returns for Bitcoin. We
found that the MSE for best NAR and NARX models is roughly the same
and that the forecasting errors are non normal, uncorrelated and random.

Table 6: MSE and R for estimated NARX models using the input series with 9 days

of delay.

Levenberg-Marquardt Bayesian Regularization Scaled Conjugate Gradient

MSE R MSE R MSE R
NARX delay 1 187.498 0.123 37.817  0.113 148.030 0.082
NARX delay 2 31.867 o.114 31.833 0.124 59.470  0.077
NARX delay 3 52.863  o0.105 30.075  0.097 76.457  0.071
NARX delay 4 31715  0.055 34.460  0.109 54.122  0.063
NARX delay 5 55.755  0.141 32.997  0.117 41.233  0.051
NARX delay 6  30.756  0.008 34.095  0.098 90.036  0.091
NARX delay 7 30.639  0.021 35.245  0.088 49.390  0.003
NARX delay 8  34.871  0.025 34.755  0.081 53.660  0.015
NARX delay 9 38.931  o.102 33.333  0.081 45.734  0.016
NARX delay 10  30.877  0.076 32.926  0.082 36.141  0.011
NARX delay 11 48.841  0.004 32.745  0.066 76.917  0.096
NARX delay 12 31.348  0.049 963.986  0.067 59.936  0.065
NARX delay 13 31.092  0.066 806.648 0.038 63.912  0.047
NARX delay 14 30.391  0.007 875.996  0.057 36.996  0.065

1



Table 7: Test statistics for forecasting errors of best NAR models and NARX models
(p-values in parentheses).

Variable Jarque-Bera Shapiro-Wilk Ljung-Box (2)  Ljung-Box (4)  White Noise MSE  Estimation
Normality ~ Normality ~ Autocorrelation Autocorrelation Test Method
Test Test Test Test

NAR delay 3 41618 0.984 1.895 6.102 1040 20033 Levenberg-Marquardt
(0:000) (0.000) (0.388) (0.192) (0.603)

NARX(delay 2) 3 days 84637 0972 0.607 5.888 0.761 30220 Bayesian Regularization
(0:000) (0.000) (0.738) (0.208) (0.703)

NARX(delay 14) 6 days 92953 0972 0.228 3.591 0.498 30446  Levenberg-Marquardt
(0:000) (0.000) (0.892) (0.464) (0.803)

NARX(delay 3) 9 days 86458 0972 0672 4838 0577 30075 Bayesian Regularization
(0.000) (0.000) (0715) (0:309) (0773)

REFERENCES

[1] M. Adya and F. Collopy. How effective are neural networks at forecast-
ing and prediction ? A review and evaluation. Journal of Forecasting,

17:481—495, 1998.

[2] R. L. Andrews. Forecasting performance of structural time series mod-
els. Journal of Business and Economic Statistics, 12:129-133, 1994.

[3] J. Angstenberger. Prediction of the s&p 500 index with neural networks.
In Neural Networks and Their Applications, pages 143—152. John Wiley
and Sons, Chichester, 1996.

[4] M. Baxter and R. G. King. Measuring business cycles: Approximate
band-pass filters for economic time series. Review of Economics and

Statistics, 81:575-593, 1999.

[5] M.H. Beale, M. T. Hagan, and H.B. Demuth. Neural Network Toolbox
User Guide. MathWorks, 2015.

[6] S. A. Billings. Nonlinear System Identification: NARMAX Methods in the
Time, Frequency, and Spatio-Temporal Domains. John Wiley and Sons,
Chichester, 2013.

[7]1 G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco, CA, 1970.

[8] L. Catania and S. Grassi. Modelling crypto-currencies financial time-
series. Technical Report, SSRN Working paper, 2018.

[9] L. Catania, S. Grassi, and F. Ravazzolo. Forecasting cryptocurrency
financial time-series. CAMP Working Paper Series, 2018.

[10] L. Catania, S. Grassi, and F. Ravazzolo. Predicting the volatility of
cryptocurrency time-series. Technical Report, MIMEO, 2018.

[11] M. Caudill. Neural Networks Primer. Miller Freeman Publications, San
Francisco, 1989.

[12] M. Caudill and C. Butler. Understanding Neural Networks: Computer
Explorations, volume1 and 2. MIT Press, Cambridge, 1992.

[13] S. Chan, J. Chu, and S. Nadarajah. Statistical analysis of the exchange
rate of bitcoin. PLoS ONE, 10, 2015.

[14] S. Chan, J. Chu, S. Nadarajah, and J. Osterrieder. A statistical analysis
of cryptocurrencies. Risk and Financial Management, 10, 2017.

[15] C. Chatfield. Neural networks: Forecasting breakthrough or passing
fad ? International Journal of Forecasting, 9:1-3, 1993.

12



[16] P. K. Clark. Trend reversion in real output and unemployment. Journal
of Econometrics, 40:15-32, 1989.

[17] E X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal
of Business and Economic Statistics, 13:253-263, 1995.

[18] G. Dreyfus. Neural Networks, Methodology and Applications. Springer and
Verlag, Berlin Heidelberg, 2005.

[19] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods.
Oxford University Press, Oxford, 2nd edition, 2012.

[20] B. Efron and R. J. Tibshirani. An Introduction to the Boostrap. Chapman
and Hall, Boca Raton, 1993.

[21] R. F. Engle and C. W. ]J. Granger. Co-integration and error correction:
representation, estimation, and testing. Econometrica, 55:251-276, 1987.

[22] ED. Foresee and M.T. Hagan. Gauss-newton approximation to bayesian
regularization. In Proceedings of the 1997 International Joint Conference on
Neural Networks, pages 1930-1935, 1997.

[23] E. Gately. Neural networks for financial forecast. John Wiley and Sons,
New York, 1996.

[24] C. W.]. Granger and P. Newbold. Forecasting Economic Time Series. Aca-
demic Press, 2nd edition, 1986.

[25] M.T. Hagan, H.B. Demuth, and M.H. Beale. Neural Network Design.
PWS Publishing, Boston, 1996.

[26] J. D. Hamilton. Time Series Analysis. Princeston University Press, 1994.

[27] A. C. Harvey. Forecasting Structural Time Series Models and the Kalman
Filter. Cambridge University Press, Cambridge, 1989.

[28] A.C. Harvey. The Econometric Analysis of Time Series. MIT Press, Boston,
MA, 2nd edition, 1990.

[29] A. C. Harvey. Time Series Models. Harvester Wheatsheaf, Hemel Hemp-
stead, 2nd edition, 1993.

[30] A.C.Harvey and A. Jaeger. Detrending, stylized facts and the business
cycle. Journal of Applied Econometrics, 8:231-247, 1993.

[31] A. C. Harvey and S. ]. Koopman. Signal extraction and the formula-
tion of unobserved components models. Econometrics Journal, 3:84-107,
2000.

[32] A. C. Harvey and P. H. ]. Todd. Forecasting economic time series with
structural and box-jenkins models: A case study. Journal of Business and
Economic Statistics, 1:299—-307, 1983.

[33] A. C. Harvey and T. Trimbur. Generalised model-based filters for ex-
tracting trends and cycles in economic time series. Review of Economics
and Statistics, 85:244—255, 2003.

[34] H. C. Harvey and D. Delle Monache. Specification and misspecification
of unobserved components models. In Economic Time Series: Modelling
and Seasonality, pages 83—108. Chapman and Hall/CRC Press, London,
2012.

13



[35] S. Haykin. Neural networks: A comprehensive foundation. Prentice Hall,
New Jersey, 1999.

[36] R.J. Hodrick and E. C. Prescott. Post war us business cycles: An em-
pirical investigation. Journal of Money, Credit and Banking, 24:1-16, 1997.

[37] C. Hotz-Behofsits, F. Huber, and T. O. Zorner. Predicting crypto-
currencies using sparse non-gaussian state space models. Journal of
Forecasting, 37:627-640, 2018.

[38] N. Kohzadi, M. S. Boyd, 1. Kaastra, B. S. Kermanshahi, and D. Scuse.
Neural networks for forecasting: An introduction. Canadian Journal of
Agricultural Economics, 43:463—474, 1995.

[39] C. M. Kuan and H. White. Artificial neural networks: An econometrics
perspective. Econometric Review, 13:1-91, 1994.

[40] H. R. Kunsch. The jackknife and the bootstrap for general stationary
observations. Annals of Statistics, 17:1217-1241, 1989.

[41] K. Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly of Applied Mathematics, 2:164-168, 1944.

[42] H. Lutkepohl. Applied Time Series Econometrics. Cambridge University
Press, Cambridge, 2004.

[43] H. Lutkepohl. New Introduction to Multiple Time Series Analysis.
Springer-Verlag, Berlin, 2005.

[44] E. Maaoumi, A. Khotanzad, and A. Abaye. Artificial neural networks
for some macroeconomic series: A first report. Econometric Reviews,

13:105-122, 1994.
[45] D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4:3:415-447,
1992.

[46] D. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11:2:431-441, 1963.

[47] K. Mehrotra, C. K. Mohan, and S. Ranka. Elements of Artificial Neural
Networks. MIT Press, Cambridge, 1997.

[48] T. Mills. Modelling Trends and Cycles in economic Time Series. Palgrave
MacMillan, New York, 2003.

[49] T. Mills and R. N. Markellos. The Econometric Modelling of Financial Time
Series. Cambridge University Press, Cambridge, 3rd edition, 2008.

[50] M. E. Moller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6:525-533, 1993.

[51] S. Moshiri and N. Cameron. Neural network versus econometrics mod-
els in forecasting inflation. Journal of Forecasting, 19:201—217, 2000.

[52] E. Nakamura. Inflation forecasting using a neural network. Economics
Letters, 86:373—378, 2005.

[53] B. M. Onimode, J. K. Alhassan, and S. A. Adepoju. Comparative study
of inflation rates forecasting using feed-forward artificial neural net-
works and auto regressive (AR) models. IJCSI International Journal of
Computer Science Issues, 12:2, 2015.

14



[54] DARPA Neural Network Study. DARPA Neural Network Study. MIT
Lincoln Laboratory, Lexington, MA, 1998.

[55] N. R. Swanson and H. White. A model selection approach to real-time
macroeconomic forecasting using linear models and artificial neural
networks. The Review of Economics and Statistics, 79:4:540-550, 1997.

[56] K. Taylor. NEURAL NETWORKS TIME SERIES using MATLAB. PRE-
DICTION and MODELING. Amazon Media EU, 2017.

[57]1 G. Tkacz. Neural network forecasting of canadian gdp growth. Interna-
tional Journal of Forecasting, 17:57—69, 2001.

[58] G. Tkacz and S. Hu. Forecasting gdp growth using artificial neural
networks. Bank of Canada Working Paper, 1999.

[59] C. Wang. Time series neural network systems in stock index forecasting.
Computer Modelling & New Technologies, 19(1B):57-61, 2015.

[60] H. White. Artificial Neural Networks: Approximation and Learning. Black-
well, Cambridge, 1992.

[61] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural
networks: The state of the art. International Journal of Forecasting, 14:35—
62, 1998.

[3, 2,1, 5,7, 4,15, 16, 19, 17, 20, 23, 28, 27, 29, 30, 31, 36, 32, 33, 40, 38, 39, 42,

48, 51, 44, 49, 52, 53, 55, 57, 58, 60, 61, 43, 26, 24, 21, 34, 6, 11, 25, 12, 35, 54,
18, 47, 56, 8, 14, 10, 13, 9, 59, 37]

15



	1 Introduction
	2 Survey of the Empirical Literature
	3 Data
	4 Neural Networks for Time Series Forecasting
	5 Empirical Results
	6 Concluding Remarks

